Proceedings of the International Conference , “Computational Systems and Communication Technology”

 8th , MAY 2010 - by Cape Institute of Technology,

Tirunelveli Dt-Tamil Nadu,PIN-627 114,INDIA

IMPACT OF FAIR SCHEDULING IN GRID
Dr.K.Vivekanandan1, D.Ramyachitra2, U.Karthick Kumar3
1Associate Professor, BSMED, Bharathiar University, Coimbatore.

2Assistant Professor, School of Computer Science and Engineering, Bharathiar University, Coimbatore.

3M.Phil Scholar, School of Computer Science and Engineering, Bharathiar University, Coimbatore.
ABSTRACT

Scheduling of tasks to the appropriate resources is one of the most important challenges in grid environment. Most of the scheduling algorithms concentrate on reduction in the overall makespan and not the fair scheduling of the tasks to the resources. This paper shows the importance of fair scheduling in grid environment such that all the tasks get equal amount of time for their execution such that it will not lead to starvation . This paper compares the normal scheduling algorithms with the fair scheduling algorithms and the impact of fair scheduling in grid is dealt with.
Keywords: Fair scheduling, Grid computing, Resource Sharing, Conventional Scheduling.
1. INTRODUCTION
Fair scheduling is a method of assigning resources to jobs such that all jobs get, on average, an equal share of resources over time. When there is a single job running, that job uses the entire cluster. When other jobs are submitted, tasks slots that free up are assigned to the new jobs, so that each job gets roughly the same amount of CPU time. Unlike the default Hadoop scheduler, which forms a queue of jobs, this lets short jobs finish in reasonable time while not starving long jobs. It is also a reasonable way to share a cluster between a numbers of users. Finally, fair sharing can also work with job priorities the priorities are used as weights to determine the fraction of total compute time that each job should get[1],[2].
The scheduler actually organizes jobs further into "pools", and shares resources fairly between these pools. By default, there is a separate pool for each user, so that each user gets the same share of the cluster no matter how many jobs they submit.[2] the Simple Fair Task Order (SFTO), which schedules the tasks according to their respective fair completion times, the Adjusted Fair Task Order (AFTO), that refines the SFTO policy by ordering the tasks using the adjusted fair Completion times, and the Max-min Fair Share (MMFS) scheduling policy, which simultaneously addresses the problem of finding a fair task order and assigning a processor to each task based on a Max-Min fair sharing policy.
It is also possible to set a job's pool based on the user's Unix group or any other job configuration property, such as the queue name property used by Capacity Scheduler. Within each pool, fair sharing is used to share capacity between the running jobs. Pools can also be given weights to share the cluster non-proportionally in the configuration file. In addition to providing fair sharing, the Fair Scheduler allows assigning guaranteed minimum shares to pools, which is useful for ensuring that certain users, groups or production applications always get sufficient resources.[2]
When a pool contains jobs, it gets at least its minimum share, but when the pool does not need its full guaranteed share, the excess is split between other running jobs. This lets the scheduler guarantee capacity for pools while utilizing resources efficiently when these pools don't contain jobs. Fair Scheduler lets all jobs run by default, but it is also possible to limit the number of running jobs per user and per pool through the config file.
This can be useful when a user must submit hundreds of jobs at once, or in general to improve performance if running too many jobs at once would cause too much intermediate data to be created or too much context switching[2],[3]. Limiting the jobs does not cause any subsequently submitted jobs to fail, only to wait in the scheduler’s queue until some of the user's earlier jobs finish. Jobs to run from each user/pool are chosen in order of priority and then submit time, as in the default FIFO scheduler in Hadoop. Finally, the fair scheduler provides several extension points where the basic functionality can be extended. [3] For example, the weight calculation can be modified to give a priority boost to new jobs, implementing a "shortest job first" policy which reduces response times for interactive jobs even further.
Proportional fair scheduling has long been studied in operating systems, networking, and real-time systems. The conventional approach is to assign each task a weight and the scheduler ensures that each task receives service time proportional to its weight. Since perfect fairness requires infinitesimally small scheduling quanta, which are infeasible, all practical schedulers approximate it with the goal of obtaining small error bounds [3].
2. SCHEDULING IN GRID
Grid scheduling is a very complex problem where application of advanced scheduling techniques is often not easy. Current scheduling production systems such as LSF or PBS are usually queue-based systems using scheduling policies. Also the more complex tools and systems such as Grid Service Broker or Grid Way Hue do, Montero, & emphasize scheduling policies, job and resource prioritization policies.[1]
A computational Grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities. It is a shared environment implemented via the deployment of a persistent, standards-based service infrastructure that supports the creation of, and resource sharing within, distributed communities. Resources can be computers, storage space, instruments, software applications, and data, all connected through the Internet and a middleware software layer that provides basic services for security, monitoring, resource management, and so forth.
Resources owned by various administrative organizations are shared under locally defined policies that specify what is shared, who is allowed to access what, and under what conditions. He real and specific problem that underlies the Grid concept is coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations . From the point of view of scheduling systems, a higher level abstraction for the Grid can be applied by ignoring some infrastructure components such as authentication, authorization, resource discovery and access control. Thus, in this paper, the following definition for the term Grid adopted:
“A type of parallel and distributed system that enables the sharing, selection, and aggregation of geographically distributed autonomous and heterogeneous resources dynamically at runtime depending on their availability, capability, performance, cost, and users' quality-of-service requirements”.

To facilitate the discussion, the following frequently used terms are defined:
· A task is an atomic unit to be scheduled by the scheduler and assigned to a resource.
· The properties of a task are parameters like CPU/memory requirement, deadline, priority, etc.
· A job or meta-task or application is a set of atomic tasks that will be carried out on a set of resources. Jobs can have a recursive structure, meaning that jobs are composed of sub jobs or tasks, and sub-jobs can themselves be decomposed further into atomic tasks. In this paper, the term job, application and meta-task are interchangeable.
· A resource is something that is required to carry out an operation, for example: a processor for data processing, a data storage device, or a network link for data transporting.
· A site (or node) is an autonomous entity composed of one or multiple resources.
· A task scheduling is the mapping of tasks to a selected group of resources which may be distributed in multiple administrative domains.

We consider a Grid environment consisting of a number of users and a number of computation resources. By the term user we do not necessarily mean an individual user, but also (and probably more appropriately) a Virtual Organization (VO), or a single application, using the Grid infrastructure. Also a computation resource can be a cluster, a parallel computer or a Grid site. Users generate atomic (un divisible and non-preemptable) tasks and every task i has workload wi and non-critical deadline Di. By the term ”noncritical” we mean that if the deadline expires, the corresponding task remains in the system until completion, but it is recorded as a deadline miss. Upon creating a new task, the user sends the task characteristics to the central scheduler, in the form of a task request. The central scheduler works”offline” or”online”.

In the former case the central scheduler receives task requests by several users and stores them in a local queue. Periodically the scheduler orders the queued task requests (using an ordering policy) and assigns them to resources (using an assignment policy). In the”online” mode the central scheduler assigns tasks to resources immediately after the arrival of the corresponding task requests. Each resource j contains a number CPUs, of total computational capacity equal to Cj and uses a space-sharing policy. Tasks are served by the CPUs of a resource based on the order they arrive to it. At any time t there are N j(t) tasks in resource’s j local queue or under execution in its CPUs [4],[5].
Scheduling algorithms have been intensively studied as a basic problem in traditional parallel and distributed systems, such as symmetric multiple processor machines (SMP), massively parallel processors computers (MPP) and cluster of work stations (COW).Looking back at such efforts, we find that scheduling algorithms are evolving with the architecture of parallel and distributed systems. Table 1 captures some important features of parallel and distributed systems and typical scheduling algorithms they adopt.
3. FIRST COME FIRST SERVE SCHEDULING
First-Come-First-Served algorithm is the simplest scheduling algorithm is the simplest scheduling algorithm. Processes are dispatched according to their arrival time on the ready queue. Being a non-preemptive discipline, once a process has a CPU, it runs to completion. The FCFS scheduling is fair in the formal sense or human sense of fairness but it is unfair in the sense that long jobs make short jobs wait and unimportant jobs make important jobs wait.[4] FCFS is more predictable than most of other schemes since it offers time. FCFS scheme is not useful in scheduling interactive users because it cannot guarantee good response time. The code for FCFS scheduling is simple to write and understand. One of the major drawback of this scheme is that the average time is often quite long. The First-Come-First-Served algorithm is rarely used as a master scheme in modern operating systems but it is often embedded within other schemes.[5]
4. EARLIEST DEADLINE FIRST SCHEDULING
Earliest deadline first scheduling is a dynamic scheduling principle used in real-time operating systems. It places processes in a priority queue. On the end of each execution of a process, it is en-queued at the end, and the queue will be searched for the process closest to its deadline. This process will then be scheduled for execution next. , the Everyman kernel offers two scheduling algorithms: Deadline Monotonic (DM), and Earliest Deadline First (EDF). The DM algorithm and now it’s time to have a look at EDF.Just like we did with DM, we will look at the theory behind the feasibility test associated with the algorithm. We’ll also see examples of using this test to predict whether or not our system designs will meet their deadlines or not when scheduled with EDF.
Compared to static scheduling techniques like rate-monotonic scheduling, earliest deadline first will generally perform better, utilizing up to 100% of CPU time. (When scheduling processor allocation time.) However, it doesn't consider priorities, and once processes start missing their deadlines, the system will be completely unpredictable. Before we look at any scheduling algorithm we need to agree on some terms. Most operating systems deal with processes or threads. The Everyman kernel deals with jobs. If you’ve never used, or even heard of, the Everyman kernel then you can just think of jobs as processes.
When we build real-time systems we often have to break our software down into periodic activities. This shouldn’t be too much of a surprise since our digital systems are often sampling continuous world we live in at pre-determined frequencies.[6] To cater for this we’ll associate a period (T) with each job (J). Real-time systems always have timing constraints in the form of deadlines, so each job will have one of those (D). The value for D is relative to the start of the job’s period. The only other term we need to know about is the worst case execution time of a job (C). Obviously C has to be less than D, otherwise the deadline would be missed, and D cannot be greater than T. [6]

5. FAIR SCHEDULING IN GRID
Fair scheduling or Fair Queuing (FQ) algorithms have received much attention in recent years because of their ability to provide a wide range of QoS guarantees to end users. Examples of well-known FQ algorithms include the Generalized Processor Sharing (GPS) policy, Weighted Fair Queuing (WFQ), Self-Clocked Fair Queuing (SCFQ), Start-Time Fair Queuing (SFQ), Starting Potential-based Fair Queuing (SPFQ) and Weighted Round Robin (WRR). [7]
Fair Scheduling Based On Error
Two very crucial issues among them are security and scheduling [6]. The scheduling algorithms described in the previous sections do not address the issue of fairness. A precise definition of fairness is essential before further discussion of fair scheduling of tasks. The classic notion of fairness in the allocation of resource among multiple requesting entities with equal rights to the resource but unequal demands is as follows.
· The resource is allocated in order of increasing demand
· No requesting task gets a share of the resource larger than its demand
· Requesting tasks with unsatisfied demands get equal shares of the resources
Tasks with higher demand are favored against the remaining tasks in the case of other existing algorithms which mean that such tasks are given a higher priority than the others which leads to starvation that increases the completion time of tasks and no fairness is guaranteed. These issues are addressed in the algorithm that we propose which allocate resources fairly to all tasks based on the error. The algorithm is oriented towards large scale computing in which multiple processes are taken into account [7].

Iterative Fair Scheduling Scheme
In this section, we first introduce a definition of fairness in input buffered switch scheduling and then propose an iterative fair scheduling (iFS) scheme that can be used to achieve fair bandwidth allocation [8].

Buffer Management for Fair Scheduling

An interactive fair scheduling scheme, did not consider the buffer size. Yet, in practice, the input buffer is finite. With rate-based flow control, which is the common choice for supporting bandwidth distribution, excessive packets are dropped when the buffer is full or congestion is anticipated. In the following, we study four selective packet discarding mechanisms and examine their impact on fair bandwidth allocation [8].

6. COMPARISON OF CONVENTIONAL SCHEDULING WITH FAIR SCHEDULING
First-Come-First-Served algorithm is a non preemptive discipline, once a process has a CPU, it runs to completion. FCFS algorithm followed by the FIFO Queue order for cpu job allocation. The FCFS scheduling is fair in the formal sense or human sense of fairness but it is unfair in the sense that long jobs make short jobs wait and unimportant jobs make important jobs wait. One of the major drawback of this scheme is that the average time is often quite long.
EDF is a preemptive, will schedule this collection of jobs such that they all complete by their deadlines. EDF can guarantee all the deadlines in the system at higher loading. when the system is overloaded, the set of processes that will miss deadlines is largely unpredictable ie.,it will be a function of the exact deadlines and time at which the overload occurs. This is a considerable disadvantage to a real time systems designer. The algorithm is also difficult to implement in hardware and there is a tricky issue of representing deadlines in different ranges. Therefore EDF is not commonly found in industrial real-time computer systems. [9][10]
Fair Scheduling Algorithm follows the round robin scheduling. Fair sharing algorithm uses a max-min approach for providing fair access to users. When there is no shortage of resources, the algorithm assigns to each task enough computational power for it to finish within its deadline. When there is congestion, the main idea is to fairly reduce the CPU rates assigned to the tasks, so that the share of resources that each user gets is proportional to the user’s weight. Experimental results and comparisons with traditional scheduling schemes, such as the Earliest Deadline First (EDF) and the First Come First Served (FCFS) are presented using three different error criteria. As compare to above two algorithms fair scheduling is better in resource sharing, complete with the deadline process and equally distributed among the processes. [10]
CONCLUSION
The major issues in Grid environment is resource management which is done by either local or global schedulers. We can guarantee the required QoS or give priority, which cannot be possible in conventional scheme. There is a tradeoff between system throughput and meet a required QoS. Fair Scheduling, is to assigning of resources to jobs such that all jobs get, on average, an equal share of resources over time.
Fair scheduling satisfies the system throughput as well as utilizes the resources in an efficient way. Finally, it concluded Fair Scheduling is the better performance when it compare with conventional algorithm.
REFERENCES:
[1] Fangpeng Dong and Selim G. Akl “Scheduling Algorithms for Grid Computing: State of
 the Art and Open Problems, School of Computing, Queen’s University Kingston, Ontario

 January 2006

[2] Mohammed Hawa “Stochastic Evaluation of Fair Scheduling with Applications to
 Quality-Of-Service In Broadband Wireless Access Networks” ”. Pages: 92 Year of

 Publication: 2003 Order Number : AI3115203

[3] Tong Li Dan Baumberger Scott Hahn “Efficient and Scalable Multiprocessor Fair

 Scheduling Using Distributed Weighted Round-Robin” PPoPP’09, February 14–18, 2009,

 Raleigh, North Carolina, USA. Copyright © 2009 ACM 978-1-60558-397-6/09/02
[4] A.K. Parekh, R. G. Gallager, “A Generalized Processor Sharing Approach to Flow
 Control in Integrated Services Networks: The Single-Node Case,” INFOCOM’ 92, pp.
 915–924, May 1992.

[5] N. Doulamis, E. Varvarigos, T. Varvarigou, Fair Scheduling Algorithms in Grids, IEEE

 TPDS, 2007.
[6] Karl Czajkowski, Ian Foster, Carl Kesselman, “Resource Co-Allocation in Computational
 “Grids”. CA 90292, IL 60439; Department of Computer Science, University of Chicago,

 Chicago, IL 60637
[7] Daphne Lopez, S. V. Kasmir Raja “A dynamic error based fair scheduling Algorithm for
 a computational grid” 2005 - 2009 JATIT. All rights reserved.
[8] Nan Ni, Member, IEEE, and Laxmi Narayan Bhuyan, Fellow, IEEE “Fair Scheduling in
 Internet Routers”. IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE

 2002,0018-9340/02/$17.00 ß 2002 IEEE
[9] Kuenyoung Kim, Hoon Kim, Youngnam Han”A Proportionally Fair Scheduling
 Algorithm With Qos And Priority In 1xev-Do”. 0-7803-7589-0/02/$17.00 ©2002 IEEE
[10] Nikolaos Doulamis, Emmanouel Varvarigos1 ,Theodora Varvarigou, “ Fair Scheduling

 Algorithms in Grids”IEEE Transactions on Parallel and Distributed Systems archive

 Volume 18 , Issue 11 (November 2007) table of contents Pages: 1630-1648 Year of

 Publication: 2007 ISSN:1045-9219

