Proceedings of the International Conference , “Computational Systems and Communication Technology”

 8th , MAY 2010 - by Cape Institute of Technology,

Tirunelveli Dt-Tamil Nadu,PIN-627 114,INDIA

 FREQUENT RESOURCE SEPERATOR IN DESKTOP GRIDS

S.Ganesh 1, R.Karthikeyan2, S.AlNaheem3, M.Vijayaraj4,R.Rahulraj5
 Student1&5 , Assistant Professor & Head2 ,Senior Lecturer3 , Assistant Professor4

Department of Computer Science & Engineering,
Mohamed Sathak Engineering College., kilakarai, Tamilnadu 1,2,3&4,

Sree Sowdambika college of Engineering, Aruppukottai, Tamilnadu5.
er_sganesh@yahoo.co.in

Abstract

 Grid computing can mean different things to different individuals. The grand vision is often users (or electrical appliances) get access to electricity through wall sockets with no care or consideration for where or how the electricity is actually generated. In this view of grid computing, computing becomes pervasive and individual users (or client applications) gain access to computing resources (processors, storage, data, applications, and so on) as needed with little or no knowledge of where those resources are located or what the underlying technologies, hardware, operating system, and so on are. This paper addresses the problem of resource scheduling, and there are so many resource scheduling algorithms. Resource scheduling algorithm may be of centralized one and distributed one. In desktop grid environment dynamic scheduling becomes very important. Globus toolkit is not having the scheduler as its own, and it need other schedulers for the scheduler work to be done. So the latest one is multivariable best-fit algorithm presented as an analogy to power grids.

1. Introduction

 Today’s enterprise IT systems are being consolidated into centralized data centers for reducing cost and to improve manageability. Efforts are now being made to increase the degree of sharing of these consolidated computing and to provide them to the end-user as a utility. Such systems are being coined as Computing Grids. In such systems, geographically distributed computing sites host
the servers, which are allocated dynamically and on-demand to the applications of the end-user.

One of the fundamental system management services needed in the middleware to enable the
vision of Computing Grids is a Resource Allocation service. This service is responsible for the dynamic allocation of a fraction of compute servers’ resources in response to an end-user request. Today’s’ IT systems typically pre-install, pre-allocate, and reserve servers for endcustomers applications, leading to overprovisioning and higher costs. On the other hand, a computing grids envisions desktop resources to be sharable across end-customers’ applications and be allocated dynamically as the need arises This brings out the need for a resource allocation service that has to consider the real-time system utilization, and the dynamic requirements of requests while making an allocation decision.
The Actual Execution of a job in globus toolkit is as figure 1. The resource allocations made, must further meet the minimum performance requirements of the hosted applications, while avoiding over provisioning of resources so as to maintain high system utilization. Prior work has looked at building resource allocation services for supporting batch applications [9], three-tier enterprise applications [10] and for server Prior work has looked at building resource allocation services for supporting batch applications [9], three-tier enterprise applications [10] and for server applications.
This work is like to address theneeds of interactive remote desktops, which are typically more sensitive to performance needs. This proposed architecture services requests for remote desktop sessions from end-users dynamically and allocates on-demand a desktop session for the end-users’ request. The fraction of the resources to be chosen is determined through the dynamic generation of the performance model for the requested remote desktop session. The dynamic generation takes place using throughThe established remote pre-generated application performance models for

the applications that would execute within the requested remote desktop session.
[image: image1.emf]
Execution of a job

2. Architecture

 The system model we consider in this paper is a single intranet. This intranet consists of servers, desktop systems and a resource management system. This proposed resource allocation service components are resident on the resource management system Figure 2 shows the flow diagram of the sequence of steps executed in the system.
The end-users submit requests for remote desktop sessions to the Resource Management System. The resource management system then allocates a desktop system to the user’s request

for the remote desktop session. A request to start the remote desktop session is then dispatched to the allocated compute node. Once the session is started, the user interactively starts applications

[image: image2.emf]
Figure 2: Flow of a Proposed System

desktop session connection.
 This is shown as middle level requests in Figure 2. These middlelevel requests go through a Session Admission Control System. Once the applications are started, the user interacts with those applications through an application specific workload. We thus have a hierarchical request structure in the system, top level requests, middle level requests, and

application specific workload, as given in Figure2.
Resource Management System [RMS]

 Figure 3 shows the architecture for the resource management system. It consists of a repository which has the submit file format and resources available and the input file details. There are two queues, an Input Queue holds the users requests when they first enter the system; and a Pending Queue holds requests that could not be assigned to a desktop system that meets the requests’ performance requirements. The requests in the Pending Queue wait till there is sufficient release of resources by the Resource management system that would meet the requests’ performance requirements. The resource capture the submit file from the submit system i.e., the hardware platform, the maximum CPU and memory capacity needed etc. On selecting a request from the Input Queue, and the satisfying user’s preference of static characteristics are obtained through a match of the users’ preferences with those in the resources available. Subsequently, a compute node for the requested remote desktop session is dynamically allocated based on the list of applications desired in that node. This step uses the submit file format and resource availability list from the repository. The Resource Assignment System, then make their decisions using these details.

Resource Assignment System

 The Resource Assignment system is responsible for assigning one of the available compute nodes to the users’ request. It aims to minimize the wait time for requests. The wait time in this section refers to the time it takes for the compute node to be assigned to a user since receiving the request. Unlike batch job submissions, a user after submitting the request for remote desktop session typically waits for the compute node to be allocated to him immediately. In this system, the wait time is dependent on (is the summation of) the wait time in the Input Queue, the wait time in the Pending Queue waiting for resources to

become available, and processing overhead the assignment algorithms. We allow for priorities to be assigned to requests based on the profile of the user. The requests would be picked from the Input Queue based on priority, thus reducing the wait time for higher priority requests in the Input Queue.

Multi-Variable Minimum spanning tree

Algorithm:

 The pseudo code for a multiple variable minimum spanning tree algorithm that takes resource requirement heuristics into consideration for resource assignment is given below. However, as mentioned earlier, we allow resource sharing i.e. there could be multiple remote desktop sessions allocated on the same compute node simultaneously. A minimum spanning tree algorithm for assigning compute nodes to remote desktop sessions would always try to pack up bins tightly. This would enable to assign more sessions onto different compute nodes and should help in reducing the wait time for the requests in the Pending Queue. We therefore consider a minimum spanning tree algorithm for resource assignment. However, we have to consider multiple variables in the algorithm - CPU, network bandwidth, and memory availability. For a particular remote desktop session, one or more of these resources may be a bottleneck resource.

[image: image3.emf]
Figure 3: Resource management system.

 The weight functions are introduced corresponding to each of these fine grain resources and adjust the weight assignment accordingly for the bottleneck resource variables. For example, for CAD design sessions, the CPU would be the bottleneck resource variable and weightage should depend on CPU utilization values for such sessions. For real time applications, the network latency would be the bottleneck resource variable. Further, the algorithm determines the difference between the available and required resource utilizations, and

assigns the weight functions as inversely proportional to these delta values. Thus, it does weighted minimum spanning tree along multiple

dimensions. The weights are assigned for the different parameters/ variables as functions, and to pick the compute node that has the highest aggregate weight across dimensions. The resource and latency requirements used for the remote desktop sessions in the algorithm are those obtained from the finding remote desktop session concept. The algorithm is given below and it uses the following variables also.

C represents CPU parameter which includes model by using the socket program CPU speed, CPU type and CPU usage, N represents Network bandwidth, MA represents the percentage of memory availability, NL represents Network Latency and SL represents the Storage latency. T represents the Number of threads running in a system, PR represents the Pending requests in a system.

1. For each compute node

a. Determine the CPU parameter, network bandwidth and storage bandwidth available on this compute node for a user’s request. Weightage of CPU parameter values can be calculated by determining the free CPU cycles, CPU type and CPU usage.

C= W (CPU cycles) + W (CPU type) + W (CPU usage)

b. Determine the delta values between the available resources from step a., and the desired resources for the requested remote desktop session. These delta values are denoted as Cdelta, Ndelta, MAdelta , Tdelta , PRdelta.

c. We now assign the following weights:

WC = f(Cdelta, Compute Intensiveness)

WN = f (Ndelta, Average expected display data size) WMA = f(Sdelta, Data intensiveness) WT = f (Tdelta, compute Intensiveness) WPR = f (PRdelta , Compute intensiveness) The weights (WC, WN, WMA, WT, WPR) are inversely proportional to the first parameter (Cdelta, Ndelta, MAdelta , Tdelta, PRdelta) are directly proportional to the second parameter

(Compute intensiveness, Average expected display data size, Data intensiveness, compute intensiveness, Data intensiveness, compute

and client side because presently globus toolkit is providing monitoring routines which is not giving details about the network capacity and otherdetails.

 These advertisements from clients are for resource availability in each node. So it is necessary to have an addition program which will send advertisements with network and storage capacity. After receiving all these details a server can store it in a data structure which is kept updated every time when a advertisement is received and which is sorted in a order. This sorted order will give the minimum spanning tree effect. This tree is used by the scheduling algorithm for selecting a suitable one and these information should be transferred to the

corresponding client for further processing. A protocol is implemented for identifying the client request and to identify the servers’ response.

3.Implementation

 Actually the implementation of this algorithm can be done by socket programming using the remote shell commands to get the remote advertisements periodically and store them in server. These server checks the resource availability using this advertisements and along the number of resources, algorithm can select the resources one by using the available data structure and algorithm.
3.1 Need for socket programming

 Socket programming is needed in both server side 4 available are considered using the above formulas. So that a perfect resource can be allocated. Some of these details can be collected from the system directory from the system and other details can be taken from different places. According to the Algorithm a protocol is implemented to identify the requirements such that the network, storage, cpu parameters and the number of threads presently running at a processor, previous throughput of the processor can be identified by the server, present pending requests are identified frequently send by the client and these details are updated in a data structure at the server side. In addition to this, the server should keep the throughput of each system and these details are also updated on the data structure frequently. This data structure is kept in a order according to the algorithm which will give the minimum spanning order. This structure is

updated regularly by the algorithm.

Presently the protocol is working properly and a login form is prepared in mySql which will identify whether the user is a valid user and if we want to add a new user a sign up form is also

available. And for each execution of a job, a resource is identifying the present job request and receives the corresponding commands from the server and responds according to the result of the work done. Intermediate status and the final status of the job is also given to the client as well as to

the server.
3.2 Algorithm implementation

 Algorithm implementation is done by using the above algorithm because the job submission is to a server and the server allocates a resource and it is necessary to transmit the files to that resource. The paths are needed from one source to all

destination resources available. And also the minimum spanning weights are assigned according to the network, storage, cpu intensiveness, respectively. Compute Intensiveness) parameters, the number of threads running at the processor, and the pending requests presently d. The effective weight of this compute node for the currently considered assignment is

Weffective = WC + WN + WMA -WT –WPR

2. Pick the compute node with the maximum assigned weight Weffective for this request. In case of equally ranked compute nodes, we pick the one with the least load where load is defined

in terms of CPU utilization.

4.Simulation

 In this section, simulation framework, that can be done is described. Subsequently, the experiments can be conducted using some of the presently available techniques and the results can be

obtained.

4.1 Simulation Framework

 A simulation framework for the computational grids that will be having the proposed resource allocation service into the framework.In the current implementation that the requests are picked from the Input Queues as Round Robin technique semantics with no priorities. Then the requests cab be tested using the remote desktop sessions by assigning compute node using the Multi-Variable minimum spanning tree algorithm. The resource utilizations for the remote desktop sessions are always guaranteed to be equal to that of the value decided through the resource requirement modeling of the remote desktop session.

5.Experiments and results

 Results are obtained according to the algorithm. Experiments are done based on the networks peak time and off time performance with the new algorithm and it is possible to compare the new algorithm with older algorithms presently available. This results shows that the algorithm is giving good results. That is selected better system and executed more than 4 seconds faster than the other algorithms. So that it is giving good results.

6.Conclusion and Future work

 Resource allocation has been an important problem in grid computing and has been widely studied for many application classes. This algorithm can also be modified with the other emerging techniques with different environment. In this aspects it will be giving a better algorithm, and it will become a big project and can be added in future.5

7.References
[1] Vanish Talwar,Biksha Agarwala, Sujoy Basu, Rajkumar, Klara Nahrstedt, “ Resource allocation for Remote Desktop Sessions in utility Grids”, Concurrency and Computation: Practice and Experience, InterScience, November 2005.

[2] Leila Ismail, Bruce Mills, Alain Hennebelle “ A Formal Model of Dynmic Resource allocation in Grids Environment”, IEEE 2008.

[3] Liang Chen, Gagan Agarwal, “Resource allocation in a Middleware for Streaming data”, 2nd Workshop on Middleware for Grid computing, Toronto,

Canada.

[4] www.globusaliance.org
[5]http//enterthegrid.com/vmp/articles/EnterTheb Grid/AEETGprofile − 20.html

[6] www.teragrid.org/library/tgmip.pdf
[7] I.Foster and C. Kesselman,“ Globus a meta computing infrastructure Toolkit”, Supercomputer applications, vol 11, no.2, 1977, pp 115-128.

[8] J.Frey et al, “Condor − G : A computation management Agent for Multi-Institutional grids”, j.Cluster Computing, vol 5, no.3,2002, pp. 237-246.

[9] Nabrzyski, J., Schopf, J.M.,Weglarz J. “Grid Resource Management: State of the Art and Future Trends”. Kluwer Academic Publishers, 2003.

[10] Rolia J., Pruyne J., Zhu X., Arlitt M. “Grids for enterprise applications”, Proceedings of 9th Workshop on Job Scheduling Strategies for Parallel

Processing, Seattle, WA, June 2003.

