Proceedings of the International Conference , “Computational Systems and Communication Technology”

 8th , MAY 2010 - by Cape Institute of Technology,

Tirunelveli Dt-Tamil Nadu,PIN-627 114,INDIA

FPGA BASED NETWORK SECURITY SYSTEM USING PARALLEL BLOOM FILTERS
Prabhakaran.G1, Dr. Senthil Kumar. A 2
1ME VLSI Design

2 Professor & Head of the Department, Electrical and Electronics Engineering

Kongu Engineering College
1prabhakaran.rgp@gmail.com
2ask_rect@yahoo.com
Abstract— This paper provides solution for multi gigabit network security through packet content scanning mechanism. The most of network firewalls are software based, they runs sequentially. In order to achieve packet inspection at GigaHz line speed, hardware implementation of parallel Bloom filters are employed. Each Bloom filter is for specified length of hashed signature, the hash function provides compact data base. While incoming packet signature match with data base, then corresponding Bloom filter indicate the presence of harmful content. Improved Bloom filter architecture is called Counting Bloom Filter (CBF) is used in this work instead of previous SRAM array. The proposed implementation utilizes an array of up/down linear feedback shift registers (LFSR) and local zero detectors, which have better energy, speed and area constraint. The overall throughput achieved is about 3 Gb/sec. The proposed CBF based security system has been implemented with Xilinx FPGA.
Keywords— Bloom filter, LFSR, FPGA, Network security.
I. Introduction

The network security is most important concern for any organization; nowadays entire data base is handled by group of computers that are connected through less privacy network. Therefore skilled persons can illegally access the network for valuable information like military secrets, banking details etc; they also destroy it through malicious attack. This unauthorized access is limit by Firewall, which is uses software based packet inspection which execute sequentially.

There is a class of packet processing applications that inspect packets deeper than the protocol headers to analyze content. For instance, network security applications must drop packets containing certain malicious Internet worms or computer viruses carried in a packet payload.

Most payload scanning applications have a common requirement for string matching [9]. For example, the presence of a string of bytes (or a signature) can identify the presence of a harmful content. Well-known Internet worms such as Nimda, Code Red and Slammer propagate by sending malicious executable programs identifiable by certain byte sequences in packet payloads. Because the location (or offset) of such strings in the packet payload and their length is unknown, such applications must be able to detect strings of different lengths starting at arbitrary locations in the packet payload.

Packet inspection applications [15], when deployed at router ports, must operate at line speeds. With networking speeds doubling every year, it is becoming increasingly difficult for software-based packet monitors to keep up with the line rates. These changes have underscored the need for specialized hardware-based solutions that are portable and operate at line speeds.

Proposed design describes a hardware-based technique using Counting Bloom filters, which can detect strings in streaming data without degrading network throughput. A Bloom filter is a data structure that stores a set of signatures compactly by computing multiple hash functions on each member of the set. This technique queries a database of strings to check for the membership of a particular string.
The answer to this query can be false positive but never a false negative. An important property of this data structure is that the computation time involved in performing the query is independent of the number of strings in the database provided the memory used by the data structure scales linearly with the number of strings stored in it. Furthermore, the amount of storage required by the Bloom filter for each string is independent of its length.

II. Existing Methods

A. Software Based Method
SNORT is a type of software used for the purpose of deep packet inspection [9] Measurements on SNORT show that 31% of total processing is due to string matching; the percentage goes up to 80% in the case of web-intensive traffic .many different algorithms or combination of algorithms have been introduced and implemented in general purpose processors (GPP) for fast string matching, using mostly SNORT open source NIDS rule set. However, intrusion detection systems running in GPP can serve only up to few hundred throughput .therefore, seeking for hardware-based solutions possibly the only way to increase performance for high speeds higher than few hundred Mbps.
B. Network Intrusion Detection Systems

 Network intrusion detection systems (NIDS) attempt to detect attacks by monitoring incoming traffic for the suspicious contents [4]. They collect data from network. Monitor activity across the network, analyze packets, and report any intrusion behavior in an automated fashion. Intrusion detection systems use advanced matching techniques (i.e.Boyer and Moore, Aho and corasic, Fisk and Varghese) on network packets to identify the known attacks.
They use simple rules to identify possible security threats, much like virus detection software, and report offending packets to the administrator for further actions .NIDS should be updated frequently, since new signatures may be added or others may change on a weekly basis. NIDS rules usually refer to the header as well as to the payload of a packet Header rules check for equality in numerical fields and are straightforward to implement .more computationally-intensive is the text search of the packet payload against hundreds of the patterns that must be performed at a wire-speed.

C. Proxy Server Method
Proxy server method breaks the traditional client/server model. Clients are required to forward their requests to a proxy server instead of the real server. After the proxy receives those requests, it will forward them to the real server only if the requests meet a predefined security policy. The real server receives the requests from the proxy, which forces it to believe that the proxy is the real client. This allows the proxy to concentrate all requests and responses from clients and servers. But the worst problems are it is expensive and time consuming to write code for proxy servers.
D. Packet Filtering Firewalls
One of the first technologies used for performing network security were packet-filtering firewalls. Those systems were implemented, basically, by using access control lists (ACL) embedded in routers. Access control was one of the primary concerns of the early age of commercial use of the Internet in the 1990s. Because routers are the connection point between internal and external networks, their use as access control devices were very natural and appropriate. Simple packet filters analyze each of the packets passing through a firewall, matching a small part of their contents against previously defined groups of access control rules. In general, the basic limitations were:
· Because they analyze individual packets, they could not identify security violations that can only be visualized by screening more of the traffic flow.

· Very little information from the packets was analyzed, avoiding the identification of several problems that could only be seen in the application layer.

· The rules were static, creating many security problems for screening protocols that negotiate part of the communication options, like ports and connections, on the fly (the FTP service is a classic example).

· In general, router ACLs, implemented through command-line parameters, are harder to manage than rules created in easy-to-use graphical user interfaces.

E. Parallel Bloom Filter using SRAM

The hardware-based technique using Bloom filters, [1] which can detect strings in streaming data without degrading network throughput. A Bloom filter is a data structure that stores a set of signatures compactly by computing multiple hash functions on each member of the set. This technique queries a database of strings to check for the membership of a particular string. The answer to this query can be false positive but never a false negative.

The design takes multiport SRAM as memory [7] for hash table data base maintenance, which use hashed address for adding, removing and query of elements. The SRAM access path can be broken down into two components: the decoder, which is the portion from the address input to the word line, and the output multiplexer, which is the portion from the cells to the output.
The read access as it determines the critical timing for the SRAM. For the read access, the address input is decoded to activate a specific word line. The decoder typically employs the divided word line structure, where part of the address is decoded to activate the horizontal global word line and the remaining address bits activate the vertical block select line. Energy dissipation in an SRAM has three components

· The dynamic energy to switch the capacitance in the decoders, bit lines, data lines and other control signals within the array

· The energy of the sense amplifiers

· The energy loss due to the leakage currents.
III. Proposed Method
A. Counting Bloom Filter
The updating of signature database by inserting and deletion of stings is difficult task in Bloom filter; in order to overcome this, Counting Bloom Filter (CBF) is adopted, shown in fig 1.
[image: image1.png]Address

Increment Probe

Decrement

Fig.1 Counting Bloom
The architectural techniques have relied on hardware counting bloom filters (CBFs) to improve upon the power, delay, and complexity of various processor structures [2]. For example, CBFs have been used to improve performance and power in snoop-coherent multiprocessor or multi-core systems. CBFs have been also utilized to improve the scalability of load/store scheduling queues and to reduce instruction replays by assisting in early miss determination at the L1 data cache. In these applications [13], CBFs help eliminate broadcasts over the interconnection network in multiprocessor systems; CBFs also help reduce accesses to much larger and thus much slower and power-hungry content addressable memories, or cache tag arrays.

B. Hash function

The hash function is a data structure that make compact database. There are several kinds of hashing functions are utilized in packet classification: additive, rotative, bit extraction, XOR-based, mixed, and universal hashing functions.
A solution to achieve a hashing function that is independent from the key set is by utilizing a class of universal hashing functions that exploits bitwise logical operations in their definition. Let H represent a class of functions with input set A and output set B. H is said to be universal if for all x, y in A, no pair of distinct keys collide under more than (1=|B|)th of the functions where |B| denotes size of B . A special class of universal hashing functions is called H3 hashing functions [3]. For a given q ∈ Q and x ∈ A, let q(k) be the k’th row of the matrix q and xk be the kth bit of x. The hashing function hq(x): A → B is defined as follows:
hq(x)=x1.q(1)⊕x2q(2)⊕……….⊕xi.q(i) (3.1)
Where “.” denotes the binary AND operation and ⊕ the exclusive OR operation. The hashing function from this class can be easily implemented in hardware [10]. The hardware stores the i x j Boolean matrix that can be organized in a bank of registers.

C. LFSRs

A maximum-length-bit LFSR sequences through 2n-1 states. It goes through all possible code permutations except one. The LFSR [5] consists of a shift register and a few embedded XNOR gates fed by a feedback loop. Each LFSR has the following defining parameters:

•Width, or size, of the LFSR (it is equal to the number of
bitsin the shift register);

• Number and positions of taps (taps are special locations in

the LFSR that have a connection with the feedback
loop);

• Initial state of the LFSR which can be any value except one

(all ones for XNOR feedback).

Without the loss of generality, we restrict our attention to the Galois implementation of LFSRs. State transitions proceed as follows. The non-tapped bits are shifted from the previous position. The tapped bits are XNORed with the feedback loop before being shifted to the next position. The combination of the taps and their locations can be represented by a polynomial. Fig 2 shows an 8-bit maximum-length Galois LFSR, its taps, and polynomial.
[image: image2.png]oH H° J—n oH
DFF DFF

clock

-UP/DOWN

Fig.2 LFSR Structure
By appropriately selecting the tap locations it is always possible to build a maximum-length LFSR of any width with either two or four taps. Additionally, ignoring wire length delays and the fan-out of the feedback path, the delays of the maximum- length LFSR is independent of its width (size). As Section V-B shows, delay increases only slightly with size, primarily due to increased capacitance on the control lines.

The tap locations for a maximum- length, unidirectional -bit LFSR can be represented by a primitive polynomial g(x) as depicted in
[image: image3.png]6=) CXF (€=6=D) 62

In (4.1), Xi corresponds to the output of the ith bit of the shift register and the constants Ci are either 0 (no tap) or 1 (tap)

Given, a primitive polynomial h(x) for an LFSR generates the reverse sequence as depicted in (4.2)
[image: image4.png](s

Yexxt@=c=n

The superposition of the two LFSRs (the original and its reverse) forms a reversible “up/down” LFSR. The up/down LFSR consists of a shift register similar to the one used for the unidirectional LFSR; a 2-to-1 multiplexer per bit to control the shift direction; and twice as many XNOR gates as the unidirectional LFSR.
IV. System Overview

This system relies on a predefined set of signatures grouped by length and stored in a set of parallel Bloom filters in hardware [8]. Each Bloom filter contains signatures of a particular length. The system uses these Bloom filters to monitor network traffic and operate on strings of the corresponding length from line data. The high-level organization of L-CBF is shown in Fig 3 L-CBF includes a hierarchical decoder and a hierarchical output multiplexer.
[image: image5.png]:: HIERARCHICAL f—{ LFSR AND ZERO > HIERARCHICAL
wns | DECODER DETECTOR MULTIPLEXURE
pasi Il array [

cLock UP/DOWEN l

OPERATION ISZERO

Fig.3 Architecture of CBF
 The core of the design is an array of up/down LFSRs and zero detectors. The L-CBF design is divided into several partitions where each row of a partition consists of an up/down LFSR and a zero detector.
L-CBF accepts three inputs and produces a single-bit output is-zero. The input operation select specifies the type of operation: INC, DEC, PROBE, and IDLE. The input n bit address specifies the address in question and the input reset is used to initialize all LFSRs to the zero state. The LFSRs utilize two non-overlapping phase clocks generated internally from an external clock.

The hierarchical decoder is used for decoding [6] the address to minimize the energy-delay product. The decoder consists of a predecoding stage, a global decoder to select the appropriate partition, and a set of local decoders, one per partition. Each partition has a shared local is-zero output. A hierarchical multiplexer collects the local is-zero signals and provides the single-bit is-zero output.
The system tests each string for membership [11] in the Bloom filters. If it identifies a string to be a member of any Bloom filter, the system then declares the string as a possible matching signature. Such strings receive further probing by an analyzer, which determines if the string is indeed a member of the set or a false positive.

The window length will vary with signature length; here six byte length window is used with four Bloom filters. The signatures are grouped based on their length and they are allocated to unique Bloom filter, the length of filters are three, four, five and six.

The incoming serial bits are continuously inspected by parallel Bloom filters; control signal from PHP enables the bloom filters whenever the payload arrive the window.

A. Packet Header Processor

The packet length is calculated by Packet Header Processor (PHP) through reading total length field at IP header. There is 16 bit representation of total length that gives length of IP header, TCP header and Payload [12].

The length of payload is extracted which is used to enables the control signal to parallel Bloom filter. Therefore the inputs are applied to parallel Bloom filter only at payload part of each TCP/IP packet flows through streaming data window [14].

The counting sequences are used in PHP for tracking the fixed header length and variable payload length, shown in fig 4. There are three counting, first one count up to Total Length field at IP header then exact payload length is calculated. Second count is up to TCP header termination and third count is equal to payload length that is calculated previously.
[image: image6.png]D—|5|TR;A|4|3|2]1T__’D

ENTERING BT J =]
PACKET

weaoer | ——s] [8oom [|eoom | | etoom | feoom

processor | control | [Furer | [purer || pures [| pcreR

4 3 2 1

v £2 £2 £2

LEAVINGBIT

MEMBERSHIP QUERY FROM BLOOM FILTERS

Fig.4 Parallel Bloom filter scan engine
B. Result and Discussion
The parallel Bloom filter is allowed to inspect the in coming packet at desire time only, the payload streaming time is calculated by PHP then control signal is used to enable the Bloom filters. The zero detector produce valid output only when operation is set to low. During insertion and deletion signal operation is set to high, the up or down signal select whether insertion or deletion to be takes place. The LFSR is enabled by during this process.
[image: image7.png]Y0000

T LT
i
[
|
i
|
|

D S O SN S G G O G N G G G

00000000
I

/00000000
I

DD
bl

R R R R

Fig.5 Parallel Bloom filter waveform
[image: image8.png]OODDO000TT 1T

1 [
e

(=

1301131 V132 {33 JT34 {136 {136 [137 136 {139 J140 141 142 143 (144 {145 J145 [147 J148 149 160 161 162 [163 1154 155 156
@ T 7 13 8 5 5 17 8 13 J0 {1 {17 113 114 [15 Ji6 17 78 19 Jo0
0 (I I

0

Fig. 6 Packet Header Processor waveform
The figure 5 shows parallel Bloom filter outputs ‘v1, v2, v3, v4’ are zero detectors output signal, which indicates presence and absence of signatures. The serial data is applied to streaming window from packet switching line. The ‘rr1, rr2, rr3, rr4, rr5, rr6’ are byte of data at window, which are applied to Bloom filters with clock. There is control over data flow through window during Bloom filter Programming.
The figure 6 shows the packet length calculation performed by PHP, here total length is 63 bytes in which header is 40 bytes remaining 23 bytes are payload. The control2 signal is set to high for payload length.
V. Conclusion

The proposed Counting Bloom Filter based Network security system has been developed using Verilog and the functionality is verified using modelsim simulator. The system is implemented with Xilinx Spartan 3E FPGA. The system ensures that local network security against virus attacks, based on signature matching by packet content inspection through parallel Bloom filter. The performance is improved by LFSR based Counting Bloom Filter (CBF) design in terms of delay, power and area. The signature database updating is simplified to up or down count of corresponding LFSR. The system throughput is improved to line speed through parallelism. This design can efficiently implement in FPGA, in order to achieve real time virus detection that inspect all internet protocol packets. The existing system maximum throughput is 150Mb/sec which is improved by hardware implementation up to 3 Gb/sec.
References

[1]
 Sarang Dharmapurikar, Praveen Krishnamurthy, Todd S. Spruill ,John W.Lockwood “Deep Packet Inspection Using Parallel Bloom Filters” IEEE Computer Society pp- 52-61, January - February 2004

[2]
Elham Safi, Andreas Moshovos,and Andreas Veneris“L-CBF: A Low-Power, Fast Counting Bloom Filter Architecture” IEEE Transactions on Very Large Scale Integration (VLSI) systems, vol 16, no. 6, June 2008

[3]
Ahmadi M. and Wong S.,“Hashing Functions Performance In Packet Classification”, Proceedings of International Conference on the Latest Advances in Networks (ICLAN-2007), pp 127-132, 2007.
[4]
B. L. Hutchings and R. Franklin and D.Carver “Assisting Network Intrusion Detection Reconfigurable Hardware” Proceedings of the 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’02) 2002

[5]
Mircea R. Stan, Member, IEEE, Alexandre F. Tenca,

and Milos D. Ercegovac “Long And Fast Up/Down Counters” IEEE Transactions on computers, vol. 47, no. 7, July 1998

[6]
Bharadwaj S. Amrutur and Mark A. Horowitz, Fellow, IEEE “Fast Low-Power Decoders For RAMs” IEEE Journal Of Solid-state Circuits, Vol. 36, No. 10, October 2001

[7]
Bharadwaj S. Amrutur and Mark A. Horowitz “Speed And Power Scaling Of SRAM’S” IEEE Transactions On Solid-state Circuits, Vol. 35, No. 2, February 2000

[8]
Arun Kumar S P “High-Speed Signature Matching In Network Interface Device Using Bloom Filters” International Journal of Recent Trends in Engineering, (Academy Publisher) Vol 1, No. 1, May 2009

[9]
Alok Tongaonkar, Sreenaath Vasudevan, and R. Sekar, “Fast Packet Classification for Snort by Native Compilation of Rules” published at 22nd Large Installation System Administration Conference (LISA ’08) ,2008

[10]
Harwayne Gidansky J., Stefan D and Dalal I., “FPGA-Based Soc for Real-Time Network Intrusion Detection Using Counting Bloom Filters” IEEE Southeast Conference, Atlanta,2009.

[11]
Sarang Dharmapurikar, Praveen Krishnamurthy, David E. Taylor “Longest Prefix Matching Using Bloom Filters” SIGCOMM’03, August 25–29, 2003.

[12]
Ioannis Sourdis, Dionisios N. Pnevmatikatos and Stamatis Vassiliadis “Scalable Multigigabit Pattern Matching for Packet Inspection” IEEE Transactions On Very Large Scale Integration (VLSI) Systems, Vol. 16.No 2,Pp 156-166, February 2008

[13]
Taskin Kocak and Ilhan Kaya “Low-Power Bloom Filter Architecture for Deep Packet Inspection” IEEE Communications Letters, Vol. 10, No. 3,Pp 210-212 , March 2006

[14]
Gianni Antichi, Domenico Ficara, Stefano Giordano, Gregorio Procissi, and Fabio Vitucci “Counting Bloom Filters for Pattern Matching and Anti-Evasion at the Wire Speed” IEEE Network pp 30-35 January/February 2009

[15]
Sarang Dharmapurikar and John Lockwood “Fast and Scalable
Pattern Matching for Network Intrusion Detection Systems” IEEE
Journal on Communications, Volume-24, Issue-10, pp-1781to1792,
Oct 2006.

